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TBEPRANDTL—BUSEMANN

ITERATION EQUATIONS FOR THE FLOW

OF A COMPRESSIBLE FLUID

- By Carl K13pkl .

The ps@icular integrals of the second-order~and third-order fiandtl-
Busemann it&ation equations for the flow of a compressible fluid sxe
obtained by mesns of the method in which the complex conjugate variables z
and ~ are utilized as ths independent variables of the analysis. The
assmnption is made that the Praudtl-Glauert solution of the linearized or
first~order iteration equation for the two-dimensional flow of a com-
pressible fluid is lam?n. The fores of the particular integrals, derived

. for mibsonic flow, are readily adapted to supersonic flows with only a
change in sign of one of the parameters of the problem.

INTRODUCTION ,

For.the past several years iteration methods have been increasingly
applied to the solution of compressible-flowproblems. .The most useful
one from the petit of view of aeronautical applications aud the one
discussed in this paper is based on men perturbations with respect to
the undisturbed flow. The Prsndtl-Glauert and Ackeret solutions in two-
dimensional subsonic and supersonic flow, r=mdi=ly, obta~edby
means of the linearization of the fundamental nonltiear differential
equation for compressible flow, are presumed.to be lmown and are taken
as the initial steps in this iteration process. Higher-order solutions
are then obt~d by’retaining a~ropriate powers and products of the
perturbation quantities. This method of iteration has been variously
labeled the Ackeret iteration process and the Praudtl-Busemsmn small
perturbation method when limited to two-dimensional subsonic flow. The
procedure has been extended ih recent years to both two-diuknsionsl and
exisymmetrical supersonic-flowproblems. .

M a recent publication (reference 1), Van Dyke succeeded in
obtaining by triel.the particular integrel of the nonhomogeneous second-
order iteration eqyation for the velocity @ential. in supersonic flow.
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The general
homogeneous
the surface

solution is then easily obtained by adding solutions of the
equation with proper regsrd to the boundsry conditions at
of the solid and at infinity.

The purpose of the present paper is to show a procedure bymesns
of which the particular titegrals of the Mgher-thsn-ftist-order iteration
equations can be derived in a systematic manner. The explicit expression
obtained for the particular integrals of the second-and third-order
iteration equations are believed to yield essentially the solution of
the problem of high subsonic flow past an arbitrary two-dimensional
profile, since it is never a difficult probkm to supply the solutions
of the homogeneous equation necessary for the fulfillment of the boundary
conditions. It is noteworthy that the psrticulsz integrals, derived for
subsonic flow, can be adapted to supersonic flow with simply a change
ti sign of one of the parameters.

F~ EQUATIONS

The fundamental nonlinear differential eqwtion go+erning the flow ‘
of a compressible fluid is

(cZ-uZ)*+ (C2 - +)$
()

avau
-uv~+~ =0

where

x, Y rectangular Cartesian coordfites in flow plane

u, v fluid velocity compgmnts alongx- ad Y-tis2 resl?ecti=lY

c locsl speed of sound

condition for irrotationalmotion is that

%=%

.

end leads to .avelocity potential O defined by

1
u_a4axv=%

(1)

(2)

1
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If the body is held fixed in a uniform streem of velocity U, the
relation between the local meed of sound c and the meed of the

where

cm sound speed in

given for adiabatic processes by

\ *}

undisturbed fluid

Y ratio of specific heats at constant pressure and constant volume

Mm Mach number of undisturbed stream (U/cm)

3

(3)

With the introduction of a characteristic length Z as unit of
length and the undisturbed streem velocity U as unit of velocity, the
quantities X, Y, u, v, end Q for the remainder of the enalysis “
denote, respectively, the nondimensional quantities x/z, Y/l, u/u,
v/U, and @/UZ, while c and ~ retain their original meanings. By
means of equation(2),equations (1) aud (3) then becmj respectively

and

2
~= [ - (U2 + +]l++fl

m

(4)

(5)’

where the subscripts X and Y denote psrtial
respect to the designated variables.

.

In order to obtain the iteration equations
of the undisturbed stream, the assumption is.made that the velo;ity
potential 14 canbe expended in the form

differentiationswith

based on smell perturbations

@=X+ ~+@2+@3+ ... ‘(6)
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the function @n+l and its

compsred with the preceding

From equations (2) and

and

and controlling *he iteration procedure,
derivatives are then regarded as small -

approximation Qno and its derivatives.

(6),

l+@lx+02x+q3x+ . . .

.

rJ1y+t112y+!3~+ .00

When these e~re.ssions for u, v are introduced into eqpation (4),
together with-the expression for c2/~2 givenby equation (5), and
the pow@s amd products of ~ and their derivatives are grouped
according to the assumptions of the small perturbation method, the
following iteration equations for the first three approximateions 01,
~, and 03 result:

(7)

(8)

(9)

For slender bodies, the first few steps of this iteration process may be
expected to yield an accurate restit with the exception of a small region
in the neighlmrhood of a stagnation point. Even at stagnation points

.

+
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the iteration method has been shown to represent correctly the effect of
compressibility (reference 2). The accuracy of the calculations
obviously depends upon the nuniberof terms determined, eacQ additional
term reducing the region of inaccuracy in the neighborhood of a stagnation
point. .

,1

The iteration equations (7), (8), sad (9) maybe put into more
familiar forms
and- y, where

.

by the introduction of-a new set of independent variables x

x= x

}

(lo)
.,

Y= x ~~$
*

Thus, for & <1, equation (7) is transformed into a Laplace equation,
whereas equations (8) and (9) are transformed into Poisson equations
with the right-hand sides com@osed of, respectively, double products and
triple products of previously determined perturbation quantities. It
is further assumed that the solution of equation (7) is available. This
initial step in the approximation to the exact nonlinear solution is
usually easily obtained, as it represents the Msndtl-Glauert approximation
(reference 3, ap&ndix B). The purpose of the present paper is then to
derive explicit expressions for the particular solutions of the second-
and third-order fteration equations (8) snd (9).

CALCULATION OF THE PARTICULAR -RAL OF THE SECOND-ORIIER

ITERATION EQUATION

By introducing the independent variables x and y defined by
equation (10), the second-order iteration equation (8) becomes

[ 1* +cp#y = =.2 o + d%% + @ly%.xy

. where

.

p2 =1- M02

.

.

(U)

.. ...- . ... .. . . .... .. ..— --—. ---- —— .-—— .—..——- ...-—— —.-—-—. —-—- —- -. -.



6 NACA TN 2159

and where use has been made of Lapl.acets equation

.

The procedure for obtaining the particular integrals of the higher-
order iteration equations is based on the use of the complex conjugate
variables z and Z. as independent variables. Thus,

z =X+iy
.

. !?=x- iy

and the equivalence of operators ,

J

+2

Then eq,uation (7) for 01 becomes

10eZz= (12)

.
The most general real solution of this equation is

% [ 1=~WI(Z) + f?l(z) (13)
.

.
— .—— -- . ..— ..= —- —— ——— --.. --— —--
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or

41
=R.P.w1(z) = R.P.til(Z)

,
where w1(z) is an arbitrary analytic function of z, fi(?i) is its

conjugate complex, and where the symbol R.P. stands for %eal. part of’f.
The imaginary part of ~(z) is a function *1, say, related to “01
by means .ofthe Cauchy-Riemann equations snd hence slso satisfies Laplacets
equation. The function ~

the actual.compressible flow
of the particular integrsls.
ful end are easily verified:

doe~not represent the stream function ~f

and does not appear in the final expressions
The following relations will be found use-

Then

and equation (U.) for the second approximation 02 becomes

1+ (2 + U)l?l;wlzz -

1+(2 + U)(wzh;)z

. . .—..—- . —..— . _ . .. ____ . ___ ._ --- --—-—— . —— —---- .——----
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.

function W2 (z)~))
.

(14)

This equation can be integrated immediately by inspection and yields
the general solution

W2 =
*[

au- 2+
7%2

where, because only the real part

arbitrary snslytic function F(z)

1(2 + U)=lWIZ + F(z) (15)

#2 of W2 is of interest, only one -

need be included. The function F(z)

satisfie~ Laplacels equation ani-is so chosen as to satisfy the.required’
boundsry conditions at the surface of the body and at infinity. The
part of the expression on the right-hand side of equation (15), excluding
the arbitrary function F(z), is the particular integral of equation (14)
and may be expressed in real form in the following manner:

Suppose

F(z) = - +1, 2 + (2 + U)wlwlz + f(z)

where f(z) is again sn arbitrary analytic function of z.

Then with the aid of the relation

‘1+- ‘+”l+’’1)=”=-‘“’Y
where use has been made of the Cauchy-Riemann conditions

(16)
.

.- .-.. -.—_- . — —- —
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the expression for 02, obtained from equation (15), becomes

,2 .$!:[- mJ@@
1

lY+ 2(2 + u)@14~ +R.P. f(z)

The expression on the right-hand side of this equation, excluding
R.P. f(z), nsmely,

(17)

(18)

corresponds precisely to the particularinte@nil obtained by Van Dyke
(reference1) for two-dimensional supersonic flow with u replaced
by -u, where for su~rsonic flow the definition of u is’

y+l %2
a
‘7%2-1

It is rather noteworthy that the particular integrsl.of the second-order
iteration equation (8) can be obtained for both subsonic and supersonic
flows by simply interchanging the sign of the parameter a.

CALCULATION OF THE PARTICULAR INTEGRAL OF TBE THIRD-ORDER

ITERATION EQUATION

In this section, the particular integral of equation (9) involving
only q, a~ and their derivatives is derived. For this purpose,

the variables x,y snd the parameter u are titroduced. Equation (9)..
then takes the f;ilowing for&

.

{ [
tip (l+a)(o@~+@~pJ + 2P%Q= +@3n=. m

[ 13 ~tibp + @12
(1 + a) 2f32(l+ u) - ~

●

(19)

-. __ . . . . _ ___ .._ _ . ... . — . . -— —--—— ---—— . . —— . .. ——— —..— .—-— -
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Use is again made of the complex conjugate variables z and Z as
tidependent variables. Thus,

!B= =R.P. (w2Z + w2;)

Q2y = R.P.i(w2z - w2~)

‘- = R.P.i(w2zz - W2ZZ)

&

. R.P.&w~ +~-)(w2zz + 2W2Z; + w2;Z)

.

.

.

,

J

-.-— - — —-— - —----- - - - - - - -..
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men equation (19), ~th, @3 = R.P.w3(z~Z), can be written as follows:

--- -)+ .
w3zi = & - ~2)”(w2zwlzz + ‘2ZZW1Z + ‘2E;1;Z + ‘2ZZW1Z

& - B2)(2 + u)(wpzfi~~ + Wezz% + ‘2Ewlzz + ‘2ZZW1Z) +

*(1 - 132)@(l + 2(J)-\(1 - 2uj Wlz%zz +

]%
A(1 - !32)[92(4+5u+2c2) + CT(3+2U) tilZ 122 +

@ - 92)[p2(2 + 5U + 2a2) +

Introduchg the expressions for w2(z,Z)
respect tO z and Z from equation (15)

(-2 + CJ+ 2u2j Wlzfilzwlzz

.

snd its derivatiws with
yields for W3z~ the fo~ow~:

p2)%(2 + C)(zfil)z(%wlzz)z +

1f12)2(J(W1zFz)2 + %(1- [pp)u #(2 +U) + (4+3U) ~l~(wlzp)z +*(1 -

+(1 - i32)2c@+ d(%2)z@bk +

*(1 - p?)2(2 + a)%lzz(=l~l~)z + “

+(1 - B2)2(2 +-WWz)zz + *(1 - ~2)2(2+“)2@12)~w-+

$(1 - P2)2(5 + 313%1Z3)Z +

B2)[P2(8+10U+3C2) ‘d6+~@Ewlz2 “

(20)
$2(1 -

.__. . -— .-. .—-—- --.— -. -- —-—. ——
.. . ..—. .— _. _ ___ . . . . . ——— —-—-- —
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in the derivation of this eqression for W3Z’5>free use was made

of the fact that insofar as the real pert 03 of w3 is concerned,
terms of the nature g(z)fi(~) and ~(E)h(z) are equivalent. It is
important to note that this type of operation leaves unaltered the real
p-. @3 of w3. Since 03 is %-hequadity sought for in the calcu-

lations, changes in the ~ part of W3 are of no consequence

tn the final results.

Equation (20) can be integrated immediatelyby inspection and yields
the following result:

=L(l - j3q2##w~z2w1zz+*(1 - pq%wlgz +
‘3 32

*(1 - 132)2d2+ d~plzqzz +

+-(1 - 1la@(2 + u) + (4+ 3U) fiplza +

+(1 - 132)2d2+ U)Z%1;W1Z2+*(1 - lk + U)%lwlzwlz +

*(1 - 132)2(2+ C)(fil~ + Fzf?l) + +(1 -.132)2(2+U)2:12W1ZZ+ -

*(1- 13?)U2(3P2 + 5)Ew~z3 + *(1 - 132)[P2(8 + 10a + 3&) +

(21)

Equation (21) is the particular integral of equation (20). The
most general solution is obtained by adding an arbitrary analytic
function G(z), satisfyingthe homogeneous or Laplace equation GZZ = O.
An arbitrary function of ~, customarily included in the general solution,
need not be considered

of interest. In fact,
conjugate 6(E).

here-because ori&the

the omitted arbitrary

real part @3 of W3 iS -

function is the complex

.)

.,

---- . -- — — —
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In order to obtain the desired form of
from equation (21), F(z) is replaced by its
equation (16), and the real.part of f(z) in
by

13

03 ( the real part of w3)
expression given in
equation (17) is replaced

R.P.f(z) = J-@ +2ci@@5y -
~22 2(2 + u)ola~

m

The final form of the particular integral of the third-order iteration
eqyation (9) then becomes

+$1 -
1

132)u[(6 + 5cr] + 3(-2 + u)ji12yqy3 +

*(1 -
[1% (lo- u)- (lo+ 7a)@qY~2qy +

*(1 -
)

92)%(2 + a)yq(~~ + Q1yQ~ +

.

(22)

----- ... .. . ____ .. ___ __, _. ------- ——- — —- . —. —..— —.—.— — -. ~
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The corresponding expression for @3 for supersonic flow is

y+l
Mm2

obtained by simply replacing u by -u with u = —
2 %2-lmd

B2 by -P2 with P2 = M=2 -1. The physical plane vsriables X and Y

are easily inserted into
transformation eqyations

both equtions (18)-and (22) by means of the
(lo),

x= x

y=f3Y

It is pointed out that the forms of the two particular integrals,
eqpations (18) and (22), derived in this paper are identical for both
subsonic and’supersonic flow. The apparent differences are caused by
a change in sign of the persmeter B2. Thus, ~2 and u are
positive for both subsonic and supersonic flow. Actually, of course, “

,
the functions represented by ~, @2, 03, . . . are different for

the two types of flow. For subsonic flow, these functions tie derived
from analytic and nonanalytic functions of z and Z; whereas’for
supersonic flow, they involve the real ‘fcharacteristi&ttvariables x A By.

Note that the last term of the ~ession on the right-hand side
of equation (22) contains the indefinite integral

,-. J[(N2’ - C&)dx + 2.JJ.Y w]

It is obvious from the corresponding complex integral in
that the integrand of equation (23) is an
can also be easily verified with the help

~+~=
..

Thus,

(23)

equation (21)
exact differential. This fact
of Laplacets equation,

o

$(%X2- %2)=Hw5.Y)

—..-

(24)
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Equation (24) represents the necessary and sufficient condition that the
integrand of equation (23) be an exact differential. Further, according
to the theory of exact differential equations, t~ integral I may be
expressed as follows: ‘

I .JXIA+J(N+-J-%+@ (25)

,
where

I
x

and where by Mdx iS

considered constant. The

meant the result of integrating M d’ with Y

d’, .

.

.

expression within the parentheses, name3y

is a function of y ofiy. This statement csn be,verified as follows:,
Thus,

(26)

and because y is considered constant in the
it is clesr that

YW

of integrating Mprocess

Z/
Q

Mdx=M

g-$> which vanishes

.

Hence the right-hand side of equation (26)

because of the condition for the existence

is

of an exact differential.

1

-.. ----- ——-. _____—._ . -. ___ _____ _.-._ ..-_._ ______ —— .—-—— —— ___ - --- . .
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Note that in general it is simpler to perforni

.-l

Jintegration wti2 dz rather than transform to”a

JAZ@~Y W-Force Base, Va., ky 29, 195G

1

tiACA‘TN2159

the complex,.,

bed’ integrel

then perform the integration.
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